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Abstract

A generalized Stroh's formalism for three-dimensional anisotropic elasticity is applied to study the elliptic crack
problem. The traction on the crack plane is expressed in a simple one-dimensional integral. The integrand contains
one of the Barnett±Lothe tensors which can be calculated directly from the elastic constants. It is shown that with

respect to a local coordinate system, the traction on the crack plane and relative crack face displacement in the
vicinity of the crack edge have the same form as their two-dimensional counterparts. A systematic method to derive
the stress intensity factors for polynomial loadings is discussed. Explicit results are given for constant, linear and
quadratic loadings. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The two-dimensional stress and displacement ®elds near the crack tip in a linear isotropic or
anisotropic elastic material are well developed (Irwin, 1957; Sih and Liebowitz, 1968; Wu, 1989). The
crack-tip stress ®eld exhibits a square-root singularity with the amplitudes measured by the stress
intensity factors (SIF's). The SIF's are dependent on the applied loading, geometry and possibly the
elastic constants. In linear elastic fracture mechanics, the SIF's play a crucial role as the parameters in
fracture criteria. The SIF's for a variety of two-dimensional con®gurations have been obtained and
collected in handbooks.

Because of the mathematical complexity, three-dimensional crack analyses have been limited. The
basic shapes which have been amenable to analysis are the penny-shaped and elliptic cracks. The type of
loading which has received most attention is in the form of polynomials of coordinates of the crack
plane. This class of loading includes such cases as uniform loading (Green and Sneddon, 1950), bending
(Smith et al., 1967) and torsion (Sneddon and Lowengrub, 1969). It also serves as a useful
approximation for arbitrary loading.

Sneddon (1946) appears to be the ®rst one to study the penny-shaped crack problem. Green and
Sneddon (1950) solved the problem where an elliptic crack is opened up by constant internal pressure.
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Kassir and Sih (1966) showed that with respect to a local coordinate system the stress and displacement
®elds near the elliptic crack border are the same as the two-dimensional crack-tip ®elds. Results for
pressure in the form of polynomials up to the sixth degree were given by Kassir and Sih (1975). The
case when the elliptic crack is subjected to constant shear was analyzed by Kassir and Sih (1966). The
aforementioned works are for isotropic solids. Kassir and Sih (1968) obtained the solution for linearly
varying shear loading in a transversely isotropic solid. They also showed that although the angular
distribution of the near-border ®elds are highly distorted by the elastic constants, the square-root stress
singularity is the same as that associated with the isotropic case. Willis (1968) developed a method to
study the stress ®eld around an elliptic crack in general anisotropic elastic media. In Willis' method the
roots of a sextic equation must be solved to obtain the elastic ®eld.

Kassir and Sih (1967) established a theorem which states that if the displacement discontinuity normal

to the elliptic crack plane is given by Qn�x 2
1 , x

2
3 �

����������������������������������������
1ÿ x 2

1 =a
2
1 ÿ x 2

3 =a
2
3

q
, where Qn�x 2

1 , x
2
3 � is a polynomial

of degree n in the second power of the coordinates x1 and x3 of the crack plane, and a1 and a3 are the
semi-axes of the ellipse, the normal stress acting on the crack surfaces is also a polynomial of degree n
in x 2

1 and x 2
2. Willis (1968) further found that the theorem remains true even when Qn�x1, x3� is a

polynomial of degree n in x1 and x2 and the displacement discontinuity is parallel to the crack plane.
Sekine and Mura (1979) modi®ed Willis' method and showed that if the displacement discontinuity is a
homogeneous polynomial of degree n, the resulting stresses on the crack surfaces are inhomogeneous of
degree n, whose terms are of the degree n, (nÿ 2), (nÿ 4), . . . .

In this paper a generalized Stroh's formalism for three-dimensional anisotropic elasticity recently
developed in (Wu, 1998) is applied to study the elliptic crack problem. In the generalized Stroh's
formalism the Radon transform (Deans, 1993) is ®rst used to reduce a three-dimensional problem to a
two-dimensional problem. The two-dimensional problem is then treated by the original two-dimensional
Stroh's formalism (Stroh, 1958) as a six-dimensional eigenvalue problem. The orthogonality and closure
relations of the eigenvectors greatly simplify the solution procedure and, in many cases including the
one under consideration, enable the solutions to be expressible in terms of three real matrices, called
Barnett±Lothe tensors (Ting, 1996) which can be calculated directly from the elastic constants (Barnett
and Lothe, 1973). Finally, the inverse Radon transform is performed by an integration on a unit circle.
An extension of Stroh's formalism to three-dimensional deformations has also been discussed by Ting
(1996). In (Ting, 1996) the solutions are in terms of the three-dimensional or two-dimensional Fourier
transform and connection with the corresponding two-dimensional solutions is less apparent.

In the present study the elastic ®eld for an elliptic crack is derived from that for a two-dimensional
slit crack. The traction on the crack plane is expressed in terms of a line integral involving the
displacement discontinuity and one of the Barnett±Lothe tensors. It is shown that with respect to a local
coordinate system, the traction on the crack plane and relative crack face displacement in the vicinity of
the crack edge have the same form as their two-dimensional counterparts. A systematic method to
derive the SIF's for arbitrary polynomial loadings is developed. Explicit results are obtained for
constant, linear and quadratic loadings.

2. Formulation

A formulation recently developed by Wu (1998) for three-dimensional anisotropic elasticity is
introduced in this section.

Let uÃ be the two-dimensional Radon transform of u de®ned as (Deans, 1993)
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Ãu�x1, x2, f� � R�u�x1, x2, x3�� �
�1
ÿ1

u�x1 cos f� x3 sin f, x2, ÿ x1 sin f� x3 cos f� dx3 �1�

where x1 and x3 are the coordinates with respect to the axes obtained by rotating the x1- and x3-axes
about the x2-axis by f, respectively (see Fig. 1). The transform may also be expressed as

Ãu�x1, x2, f� �
�1
ÿ1

�1
ÿ1

u�x1, x2, x3�d�x1 ÿ n � x� dx1 dx3 �2�

where d is the Dirac delta function and n=(cos f, 0, ÿsin f )T is the unit vector along the x1-axis. The
general solution for uÃ can be expressed as

Ãu � 2 Re�A�f�Ãf�z�� �3�
where Re denotes `the real part of'. In Eq. (3), A=(a1, a2, a3), fÃ=(fÃ1(z1), fÃ2(z2), fÃ3(z2))

T, za=x1+pax2.
Here pa and aa, a=1, 2, 3, are the eigenvalues and the corresponding eigenvectors, respectively,
determined by

�Q�f� � �R�f� � R�f�T�p� T�f�p2�a � 0 �4�
The matrices Q(f ), R(f ) and T(f ) are given by

Q � OTQ�O, R � OTR�O, T � OTT�O �5�
where

Q�ik�f� � C �i1k1�f�, R�ik�f� � C �i1k2�f�, T �ik�f� � C �i2k2�f� �6�
and

O�f� �
0@ cos f 0 ÿsin f
0 1 0
sin f 0 cos f

1A
Here C �ijks is the elastic constant with respect to the coordinate system (x1, x2, x3). The matrix O(f )

Fig. 1. The rotated coordinates (x1, x3) in Radon transform.
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represents a rotation by f about the x2-axis. Substitution of Eq. (5) into (4) yields

�Q��f� � �R��f� � R��f�T�p� T��f�p2�a� � 0 �7�
where

a��f� � O�f�a�f� �8�
Eq. (7) shows that p(f ) and a�(f ) are Stroh's eigenvalue and eigenvector, respectively, for two-
dimensional deformations in the (x1, x2)-plane (Stroh, 1958). The eigenvalue pa is complex if the strain
energy is positive de®nite. Since the eigenvalue p in Eq. (7) appear as three complex conjugate pairs, we
can let Im[ pa] > 0, a=1, 2, 3, where Im denotes `the imaginary part of'. From Eq. (8) the matrix A can
be expressed as

A�f� � OT�f�A��f� �9�
where A�=(a�1, a

�
2, a
�
3).

Let t=(s21, s22, s23)
T. The Radon transform of t, tÃ , can be expressed as

Ãt � 2 Re�B�f�Ãf 0 � �10�
where B is given by

B � RTA� TAP �11�
P=diag( p1, p2, p3) and prime denotes di�erentiation with respect to x1. With Eqs. (5) and (8), Eq. (11)
can be expressed as

B�f� � OT�f�B��f� �12�
where B�=R�TA�+T�A�P.

A matrix L� which will play an important role is given by (Stroh, 1958)

L��f� � ÿ2iB��f�B��f�T �13�
where i � �������ÿ1p

: The matrix L� is real, symmetric and positive de®nite. The matrix L� can also be
calculated directly from the elastic constants by the following integral (Barnett and Lothe, 1973)

L��f� � ÿ1

p

�p
0

N3�y, f� dy �14�

where

N3�y, f� � R��y, f��T��y, f��ÿ1R�T�y, f� ÿQ��y, f�
and

Q��y, f� � Q��f� cos 2 y� �R��f� � R�T�f�� cos y sin y� T��f� sin2 y

R��y, f� � R��f� cos2 y� �T��f� ÿQ��f�� cos y sin yÿ R�T�f� sin2 y

T��y, f� � T��f� cos2 yÿ �R��f� � R�T�f�� cos y sin y�Q��f� sin2 y
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For transversely isotropic material with the x2-axis as the symmetry axis, L� is a diagonal matrix given
by

L� �
0@L�11 0 0
0 L�22 0
0 0 L�33

1A �15�

where L �11, L
�
22 and L �33 are (Dongye and Ting, 1989)

L�11 � �
���������������
C11C22

p
� C12�

 
C66�

���������������
C11C22

p ÿ C12�
C22�2C66 �

���������������
C11C22

p � C12�

!1=2

L�22 �
���������
C22

C11

r
L�11, L�33 �

���������������
C44C55

p
In particular for isotropic material

L�11 � L�22 �
m

1ÿ n
, L�33 � m �16�

where m is the shear modulus and n is the Poisson's ratio. From (12), the matrix L de®ned as

L�f� � ÿ2iB�f�B�f�T �17�
is related to L� by

L�f� � O�f�TL��f�O�f� �18�
The displacements and the stress vector are obtained by inverting the Radon transform. The result is

u�x� � sgn�x2�
2p

Im

"� 2p

0

A�f�Ãf 0�z� jx1�n�x df

#
�19�

t�x� � sgn�x2�
2p

Im

"� 2p

0

B�f�Ãf 00�z� jx1�n�x df

#
�20�

provided that fÃ'a (x1+pax2)4 0 as x141.

3. Stresses on the plane of crack

Consider ®rst the problem of a Somigliana's dislocation with b(x1, 3)=u+ÿuÿ on the (x1, x3)-plane.
The corresponding two-dimensional problem in the Radon transform domain (x1, x2, f ) is that of a
Somigliana's dislocation with bÃ (x1, f )=uÃ +ÿuÃ ÿ on the x1-axis, where bÃ is the Radon transform of b.
The analytic functions fÃ'a (za) for the two-dimensional problem is given by (Stroh, 1958)

f̂
0
a�za� �

1

2pi
Bka

�1
ÿ1

1

sÿ za

@ b̂k�s, f�
@s

ds �21�
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By the Plemelj formulae, fÃ '+, the limiting value of fÃ ' as x24 0+, is given by

Ãf
0 � � BT

 
1

2pi

�1
ÿ1

1

sÿ x1

@ Ãb�s, f�
@s

ds� 1

2

@ Ãb�x1, f�
@x1

!
�22�

where the principal value of the integral is taken. Substitution of Eq. (22) into Eq. (20) yields the
following real-form expression for t at x2=0

t�x1, x3� � 1

4p

�p
0

L�f�@
2 Ãb�x1, f�
@x2

1

�����
x1�n�x

df �23�

where L is given by Eq. (17). Note that Eq. (23) is also valid for isotropic material.
An elliptic crack can be simulated by a Somigliana's dislocation b over the region D: (x1/a1)

2+(x3/a3)
2

R 1. The corresponding bÃ in the Radon transform domain is given by

Ãb�x1, f� �
�
D

bd�x1 ÿ x1 cos f� x3 sin f� dx1 dx3 �24�

By introducing y1=(x1/a1), y3=(x3/a3), Eq. (24) can be rewritten as (Deans, 1993)

Ãb�x1, f� �
a1a3
R�f� b̂�Z1, c� �25�

where b̂�Z1, c� is the Radon transform of b over the unit disk D ': y 2
1+y 2

3 R 1, i.e.

b̂�Z1, c� �
�
D 0

bd�Z1 ÿ y1 cos c� y3 sin c� dy1 dy3 �26�

In Eq. (26), Z1=[x1/R(f )] and

cos c � a1 cos f
R�f� , sin c � a3 sin f

R�f� , R�f� �
��������������������������������������������
a2
1 cos 2 f� a2

3 sin2 f
q

�27�

Eq. (27) can also be rewritten as

cos f � a3 cos c
N�c� , sin f � a1 sin c

N�c� , N�c� �
��������������������������������������������
a2
3 cos 2 c� a2

1 sin2 c
q

�28�

The functions b̂�Z1, c� can be expressed as (Deans, 1993)

b̂�Z1, c� � Ãg�Z1, c�H�1ÿ Z2
1 � �29�

where H is the unit step function and gÃ (Z1, c ) is a Radon transform which satis®es

Ãg�Z1, c� � Ãg�ÿZ1, c� p� �30�

Ãg�21, c� � 0 �31�
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�1
ÿ1

Zk1 Ãg�Z1, c� dZ1 � Pk�cos c, sin c� �32�

Here Pk (cos c, sin c ) is a polynomial of degree k in cos c and sin c.
Eq. (23) can be expressed in terms of c as

t� y1, y3� � 1

4pa3

�p
0

M�c� @
2

@Z2
1

b̂�Z1, c� jZ1�n 0�y dc �33�

where n '=(cos c, ÿsin c )T, M(c )=(1/a1)N(c )L(f(c )), y=( y1, y3)
T and the following identity has

been used

N�c�R�f� � a1a3

From Eq. (29),

@ 2

@Z2
1

b̂�Z1, c� �
 
@ 2

@Z2
1

Ãg�Z1, c�
!
H�1ÿ Z2

1 � � 2

�
@

@Z1
Ãg�Z1, c�

�
�d�Z1 � 1� ÿ d�Z1 ÿ 1�� � Ãg�Z1,

c��d 0�Z1 � 1� ÿ d 0�Z1 ÿ 1��
�34�

Let y1=y cos c0, y2=ÿy sin c0, y �
����������������
y2
1 � y2

2

q
: The variable Z1 can be replaced by

Z1 � y cos�cÿ c0�
For y<1, j Z1 j< 1 and Eq. (34) becomes

@ 2

@Z2
1

b̂�Z1, c� �
 
@ 2

@Z2
1

Ãg�Z1, c�
!
H�1ÿ Z2

1 �

and the stress vector inside the crack is given by

t� y, c0� �
1

4pa3

�p
0

M�c� @
2

@Z2
1

Ãg�Z1, c� jZ1�y cos�cÿc0� dc �35�

Eq. (35) is an integral equation of gÃ (Z1, c ) for a given function of t.
To derive t for y>1, it is more convenient to change the integration variable for c to Z1 for Eq. (33).

The result is

t� y, c0� �
1

4pa3

� y cos c0

ÿy cos c0

1����������������
y2 ÿ Z2

1

q M�c� @
2

@Z2
1

b̂�Z1, c� dZ1 �36�

Substitution of Eq. (34) into Eq. (36) leads to

t� y, c0� �
1

4pa3

�1
ÿ1

1����������������
y2 ÿ Z2

1

q M�c� @
2

@Z2
1

Ãg�Z1, c� dZ1 �
1

4pa3

1��������������
y2 ÿ 1

p M�cÿ1�
@

@Z1
Ãg�Z1,

cÿ1� jZ1�ÿ1 ÿ
1

4pa3

1��������������
y2 ÿ 1

p M�c1�
@

@Z1
Ãg�Z1, c1� jZ1�1

�37�
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where

cÿ1 � c0 � pÿ cos ÿ1
1

y
, c1 � c0 � cos ÿ1

1

y

and Eq. (31) has been used. As y4 1+ the integral on the right side of Eq. (37) is non-singular and the
remaining two terms have square-root singularity. Thus, the asymptotic stress near the crack edge at
c=c0 is given by

t� y, c0� � ÿ
1

2
���
2
p

pa3

1�����������
yÿ 1
p M�c0�

@

@Z1
Ãg�Z1, c0� jZ1�1 �38�

where the identity M(c+p )=M(c ) (Wu, 1998), and Eq. (30) have been e�ected. With respect to the
local coordinate system (n, x2, t ) with origin at (a1 cos c0, 0, ÿa3 sin c0) on the crack edge as shown in
Fig. 2, the stress intensity factor (SIF) is de®ned as

K�c0� � �KII, KI, KIII�T �
�������
2pr
p

O�f0� lim r40t�r, c0� �39�

where f0 is the angle between the normal at the point and the x1-axis and r is the normal distance from
the crack edge. It can be easily shown that f0 is related to c0 in exactly the same way as f is to c
through Eq. (28) and that the normal distance r is given by

r � a1a3
N�c0�

� yÿ 1� �40�

where N(c0) is given in Eq. (28)3. Substitution of Eqs. (38) and (40) yields

K�c0� � ÿ
1

2

�������������
N�c0�
pa1a3

s
L��f0�O�f0�

@

@Z1
Ãg�Z1, c0� jZ1�1 �41�

where Eq. (18) has been used.
For transversely isotropic material, with Eq. (15), Eq. (35) can be decoupled into two independent sets

of equations as

Fig. 2. The local coordinate system (n, t ) with origin at (a1 cos c0, ÿa3 sin c0) on the crack edge.
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s22� y1, y3� � 1

4pa3

�p
0

M22�c� @
2

@Z2
1

ĝ2�Z1, c� jZ1�n 0�y dc �42�

�
s21� y1, y3�
s23� y1, y3�

�
� 1

4pa3

�p
0

m�c� @
2

@Z2
1

�
ĝ1�Z1, c�
ĝ3�Z1, c�

������
Z1�n 0�y

dc �43�

where

M22�c� � L�22
a1

N�c�

m�c� � a1L
�
11

N�c�
� �k 0 2 ÿ r� cos2c� r ÿk 0�1ÿ r� cos c sin c
ÿk 0�1ÿ r� cos c sin c �k 0 2rÿ 1� cos2 c� 1

�
k '=(a3/a1), and r is de®ned as

r � L�33
L�11
�
 
C55C22�2C66 �

���������������
C11C22

p � C12�
�C11C22 ÿ C 2

12��
���������������
C11C22

p � C12�

!1=2

The dimensionless parameter r reduced to 1ÿn for isotropic material. Similarly SIF of Eq. (41) can also
be decomposed into

KI�c0� � ÿ
1

2

�������������
N�c0�
pa1a3

s
L�22

@

@Z1
ĝ2�Z1, c0� jZ1�1 �44�

�
KII�c0�
KIII�c0�

�
� ÿ1

2

L�11�������������������
pk 0N�c0�

p �
k 0 cos c0 ÿsin c0

r sin c0 rk 0 cos c0

�
�45�

@

@Z1

�
ĝ1�Z1, c0�
ĝ3�Z1, c0�

������
Z1�1

�46�

Since from Eq. (42) L �22gÃ2 does not depend on the material constants, Eq. (44) indicates that KI is
independent of the elastic constants. Likewise Eqs. (43) and (46) show that KII and KIII depend on the
elastic constants only through the dimensionless parameter r. The conclusion has been noted in Kassir
and Sih (1975). However, their expression for r is incorrect.

4. Relative crack face displacement

Without loss of generality, let the relative crack face displacement be expressed as

b� y1, y3� �
��������������
1ÿ y2

p
Q� y1, y2�H�1ÿ y2� �47�

where Q( y1, y2) is an arbitrary function of y1 and y2. By Eq. (1), the Radon transform b̂�Z1, c� of b
de®ned by Eq. (26) can be expressed as
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b̂�Z1, c� �
�1
ÿ1

b�Z1 cos c� Z3 sin c, ÿ Z1 sin c� Z3 cos c� dZ3 �48�

where Z1 and Z3 are the coordinates with respect to the axes obtained by rotating the y1- and y3-axes
about the x2-axis by c, respectively. Substitution of Eq. (47) into Eq. (48) with a change of variable
Z3=cl leads to

Ãg�Z1, c� � �1ÿ Z2
1 �
�1
ÿ1

��������������
1ÿ l2

p
Q�Z1 cos c� cl sin c, ÿ Z1 sin c� cl cos c� dl �49�

where c �
��������������
1ÿ Z2

1

q
: Di�erentiation of Eq. (49) with respect to Z1 at Z1=1 yields

@ Ãg�Z1, c�
@Z1

�����
Z1�1
� ÿpQ�cos c, ÿ sin c� �50�

With respect to the local coordinate system (n, x2, t ) shown in Fig. 2, the asymptotic expression for Eq.
(47) as the point is approached is

lim y41ÿ
b��cos c0, ÿ sin c0����������������1ÿ y�p �

���
2
p

O�f0�Q�cos c0, ÿ sin c0� �51�

where b�( y1, y3)=O(f0)b( y1, y3). From Eqs. (41) and (50), Eq. (51) can be expressed as

lim y41ÿ
b��cos c0, ÿ sin c0���

r
p � 2

����
2

p

r
�L��f0��ÿ1K�c0� �52�

Eq. (52) is the same as the two-dimensional expression (Wu, 1989).

5. Polynomial loadings

Let Q( y1, y2) in Eq. (47) be given by (Willis, 1968)

Q� y1, y2� � Re�� y1 � iy2�l� y1 ÿ iy2�nÿlq� �53�
where q is a constant vector of a complex number, n and l are positive integers. For each l R n, Eq. (53)
represents a homogeneous polynomial of degree n in y1 and y2. Substitution of Eq. (53) into Eq. (49)
yields

Ãg�Z1, c� � �1ÿ Z2
1 �Re�ei�nÿ2l �ch�Z1�q�

where

h�Z1� �
�1
ÿ1

��������������
1ÿ l2

p
�Z1 � icl�l�Z1 ÿ icl�nÿl dl �54�

By using the binomial theorem and the integral formula�1
ÿ1

��������������
1ÿ l2

p
l j � 0, � j odd �
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the function h(Z1) can be shown to be an inhomogeneous polynomial in Z1, consisting of terms of degree
n, n ÿ 2, n ÿ 4, . . . . The corresponding stress vector t obtained by substituting Eq. (55) into Eq. (35) is
in the form of polynomials in y1 an dy2, whose terms are of degree n, (n ÿ 2), (n ÿ 4), . . . (Sekine and
Mura, 1979). Thus, for an arbitrary inhomogeneous polynomial of Q( y1, y2) in y1 and y2 with terms of
degree n, nÿ 2, nÿ 4, . . . , the corresponding gÃ (Z1, c ) in Eq. (49) can be expressed as

Ãg�Z1, c� � �1ÿ Z2
1 �Re

24X�n=2�
l�0

ei�nÿ2l �c
X�n=2�
m�0

Znÿ2m1 q
�nÿ2l �
nÿ2m

35 �55�

where [n/2] denotes the integer part of n/2, q(0)n ÿ 2m are real constant vectors and q
�2lÿn�
nÿ2m , 2 lÿn$0, are

complex constant vectors. The constant vectors q
�2lÿn�
nÿ2m , 2 lÿn$0 are not all independent. In fact from

Eq. (32), they are related by�1
ÿ1

Zk1

 
�1ÿ Z2

1 �
X�n=2�
m�0

Znÿ2m1 q
�nÿ2l �
nÿ2m

!
dZ1 � 0, �k � 0, 1, . . . , nÿ 2lÿ 1� �56�

for l = 0, 1, . . . , [n/2]ÿ1. For t in the form of an arbitrary homogeneous polynomial of degree n, the
constant vectors q

�nÿ2l �
nÿ2m can be determined by Eqs. (35) and (56).

In enforcing Eq. (35) the following matrices are crucial

M�2k� � 1

p

�p
0

eÿi2kcM�c� dc, k � 0, 1, 2, . . . �57�

These matrices are actually the coe�cients in the Fourier series of M(c ), i.e.

M�c� � M�0� � Re

"X1
k�1

ei2kcM�2k�
#

Once the constant vectors q
�nÿ2l �
nÿ2m are determined, the stress intensity factor can be calculated by

K�c0� �
�������������
N�c0�
pa1a3

s
L��f0�O�f0�Re

24X�n=2�
l�0

ei�nÿ2l �c
X�n=2�
m�0

q
�nÿ2l �
nÿ2m

35 �58�

The procedure is illustrated by the following examples.

5.1. Uniform loading

For uniform loading t=ÿt(0), Eq. (55) with n=0 yields

Ãg�Z1, c� � �1ÿ Z2
1 �q�0�0

From Eq. (35)

q
�0�
0 � 2a3�M�0��ÿ1t�0�

The SIF is obtained from Eq. (58) as
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K�c0� � 2

������������������
a3N�c0�
pa1

s
L��f0�O�f0��M�0��ÿ1t�0� �59�

For transversely isotropic material, with L� given by Eq. (15), M(0) is a diagonal matrix with elements
given by

M
�0�
11 �

2L�11
p
��k 0 2 ÿ r�I20�k� � rI00�k��

M
�0�
22 �

2L�22J00�k�
p

M
�0�
33 �

2L�11
p
��k 0 2rÿ 1�I20�k� � I00�k��

where k 2=1ÿk '2 and expressions for J00, I00 and I20 in terms of the complete elliptic integrals are given
in the Appendix. The explicit expression for the SIF of Eq. (59) is

KI�c0� �
��������������������
pa3N�c0�

a1

s
t
�0�
2

E�k� �60�

KII�c0� � 2

��������
a3
pa1

r
L�11�������������
N�c0�

p  
a3 cos c0

M
�0�
11

t
�0�
1 ÿ

a1 sin c0

M
�0�
33

t
�0�
3

!
�61�

KIII�c0� � 2

��������
a3
pa1

r
rL�11�������������
N�c0�

p  
a1 sin c0

M
�0�
11

t
�0�
1 �

a3 cos c0

M
�0�
33

t
�0�
3

!
�62�

Eq. (60) recovers the result derived in Green and Sneddon (1950) and Eqs. (61) and (62) agree with the
result in Kassir and Sih (1975).

5.2. Linear loading

Let t=ÿRe[t(1)B ], where t(1) is a complex constant and B=( y1+iy3). In this case, n = 1 and Eq. (55)
becomes

Ãg�Z1, c� � �1ÿ Z2
1 �Z1 Re�eicq

�1�
1 �

From Eq. (35)

ÿRe�t�1�B� � ÿ 3

2pa3
Re

���p
0

eicZ1M�c� dc
�

q
�1�
1

�
�63�

By replacing Z1 with

Z1 � 1
2�eicB� eÿic �B�

Eq. (63) yields

K. Wu / International Journal of Solids and Structures 37 (2000) 4841±48574852



M�2�q�1�1 �M�0�q�1�1 �
4a3
3

t�1� �64�

The vector q(1)1 can be solved from Eq. (64) and the corresponding SIF is given by Eq. (58) as

K�c0� �
�������������
N�c0�
pa1a3

s
L��f0�O�f0�Re�eic0q

�1�
1 � �65�

For transversely isotropic material the non-zero elements of M(2) are given by

M
�2�
11 �

2L�11
p
�2�k 0 2 ÿ r�I40�k� ÿ �k 0 2 ÿ 3r�I20�k� ÿ rI00�

M
�2�
22 �

2L�11
p
�J20�k� ÿ J02�k��

M
�2�
33 �

2L�11
p
�2�k 0 2rÿ 1�I40�k� ÿ �k 0 2rÿ 3�I20�k� ÿ I00�

M
�2�
12 �M

�2�
21 � i

4L�11
p

k 0�1ÿ r�I22�k�

where the expressions for Iab and Jab in terms of the complete elliptic integrals are listed in the
Appendix. For t(1)=(0, t (1)2 , 0)T, Eq. (64) yields

q
�1�
1 �

pa3
3L�22

 
0,

Re�t�1�2 �
J20�k� ÿ i

Im�t�1�2 �
J02�k� , 0

!T

and Eq. (65) becomes

KI�c0� �
1

3

��������������������
pa3N�c0�

a1

s  
Re�t�1�2 �
J20�k� cos c0 �

Im�t�1�2 �
J02�k� sin c0

!
�66�

Eq. (66) is identical with the result derived in Kassir and Sih (1975). For t(1)=(t (1)1 , 0, 0)T, where t (1)1 is
real, Eq. (64) yields

q
�1�
1 �

pa3t
�1�
1

3L�11
�C, 0, ÿ ik 0D�T

C � �1ÿ r�k 0 2I22�k� ÿ J02�k�
�1ÿ r��J00�k� ÿ k2J20�k��I22�k� ÿ J20�k�J02�k�

D � �1ÿ r�I22�k�
�1ÿ r��J00�k� ÿ k2J20�k��I22�k� ÿ J20�k�J02�k�

and the corresponding SIF's are
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KII�c0� �
�������
pk 0
p

a3t
�1�
1

3
�������������
N�c0�

p �C cos2 c0 ÿD sin2 c0�

KIII�c0� �
���
p
p

ra3t
�1�
1

3
�����������������
k 0N�c0�

p �C� k 0 2D� cos c0 sin c0

The results are the same as those obtained in Kassir and Sih (1975).

5.3. Quadratic loading

Let

t � ÿt
�2�
0 B�Bÿ Re�t�2�2 B2� �67�

where t(2)0 is real and t(2)2 is complex. Setting n=2 in Eq. (55) gives

Ãg�Z1, c� � �1ÿ Z2
1 �Re

"X1
l�0

ei�2ÿ2l �c
X1
m�0

Z2ÿ2m
1 q

�2-2l �
2ÿ2m

#
�68�

From Eq. (32) q(2)0 and q(2)2 are related by

q
�2�
2 � 5q

�2�
0 � 0 �69�

Substitution of Eqs. (67) and (68) into Eq. (35) leads to

M�0��q�0�2 ÿ q
�0�
0 � � Re�M�2��q�2�2 ÿ q

�2�
0 �� � 0 �70�

M�0�q�0�2 � Re�M�2�q�2�2 � �
2a3
3

t
�2�
0 �71�

2 Re�M�2��q�0�2 �M�4�q�2�2 �M�0�q�2�2 �
4a3
3

t
�2�
2 �72�

The vectors q
�0�
2 and q

�2�
2 can be solved from Eqs. (71) and (72). The vector q

�2�
0 is then determined by

Eq. (69) and q
�0�
0 by Eq. (70). The corresponding SIF is

K�c0� �
�������������
N�c0�
pa1a3

s
L��f0�O�f0�

�
q
�0�
2 � q

�0�
0 �

4

5
Re�ei2c0q

�2�
2 �
�

�73�

For transversely isotropic material subjected to quadratic normal pressure, Eqs. (71) and (72) yield

Re�q�2�2 � �
4a3
3

m0 Re�t�2�2 � ÿm2t
�2�
0

�m4 �m0�m0 ÿ 2m2
2

Im�q�2�2 � �
4a3
3

Im�t�2�2 �
m4 ÿm0
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q
�0�
2 �

2a3
3

�m4 �m0�t�2�0 ÿ 2m2 Re�t�2�2 �
�m4 �m0�m0 ÿ 2m2

2

q
�0�
0 � q

�0�
2 �

6m2

5m0
Re�q�2�2 �

where mj0M ( j )
22 , j=0, 2, 4 and m4=2L �22(J00(k )ÿ8J22(k ))/p. The corresponding KI is given by

KI�c0� �
2

15

�������������������
pk 0N�c0�

p (
3

J00
t
�2�
0 � ��J02 ÿ 2J22�t�2�0 � J02 Re�t�2�2 ��

cos2 c0

D
� ��J20 ÿ 2J22�t�2�0 ÿ J20

Re�t�2�2 ��
sin2 c0

D
� Im�t�2�2 �

J22
sin c0 cos c0

)

where D=J20J02ÿJ00J22. The above expression agrees with that in Kassir and Sih (1975) except that the
®rst term is missing in their result.

6. Conclusions

The traction on the plane of a elliptic crack in a general anisotropic elastic solid is expressed in terms
of a simple one-dimensional integral of the Radon transform of the displacement discontinuity
convoluted by a matrix connected with the elastic constants. The integral equation is used to show that
with respect to a local coordinate system the traction on the crack plane and the relative crack face
displacement near the crack border are the same as those in the two-dimensional case. A general form
for the Radon transform of the displacement discontinuity which can be used to obtain the stress
intensity factors for arbitrary polynomial loadings is proposed. Explicit results for constant, linear and
quadratic loadings are derived.
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Appendix

In this Appendix several relevant results related to the elliptic integrals for transversely isotropic
material are given.

De®ne Iab (k ) and Jab (k ) as

Iab�k� �
�p=2
0

sin a t cos b t��������������������������
1ÿ k2 sin2 t
p dt, Jab�k� �

�p=2
0

sin a t cos b t
���������������������
1-k2 sin 2 t

p
dt

For a, b>ÿ1, j k j< 1, the integrals can be expressed as (Gradshteyn and Ryzhik, 1980)
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Iab�k� � 1

2
B

�
a� 1

2
,
b� 1

2

�
F

�
a� 1

2
,
1

2
;
a� b� 2

2
;k2

�

Jab�k� � 1

2
B

�
a� 1

2
,
b� 1

2

�
F

�
a� 1

2
, ÿ 1

2
;
a� b� 2

2
;k2

�
where `B' is the beta function and F is the hypergeometric function. In particular for a=b=0

I00�k� � K�k� � p
2
F

�
1

2
,
1

2
;1;k2

�

J00�k� � E�k� � p
2
F

�
1

2
, ÿ 1

2
;1;k2

�
where K(k ) and E(k ) are the complete elliptic integrals of the ®rst and second kinds, respectively. If a
and b are even integers, Iab and Jab are also expressible in terms of the complete elliptic integrals by
using the following formulas (Gradshteyn and Ryzhik, 1980):

F�a, b;c� 1;w� � c

�cÿ a��cÿ b� �1ÿ w�c�1ÿaÿb

d

dw
��1ÿ w�a�bÿcF�a, b;c;w��

F�a� 1, b;c� 1;w� � ÿ c

a�cÿ b� �1ÿ w�1ÿa d

dw
��1ÿ w�aF�a, b;c;w��

dK

dw
� 1

2w

�
E

1ÿ w
ÿ K

�
,

dE

dw
� 1

2w
�Eÿ K �

where w=k 2. Some values of Iab and Jab are listed below:

I20�k� � 1

k2
�K�k� ÿ E�k��

I02�k� � I00�k� ÿ I20�k� � 1

k2
�E�k� ÿ �1ÿ k 2�K�k��

J20�k� � 1

3k 2
��2k2 ÿ 1�E�k� � �1ÿ k2�K�k��

J02�k� � J00�k� ÿ J20�k� � 1

3k2
��k2 � 1�E�k� ÿ �1ÿ k2�K�k��

I22�k� � 1

k2
�I02�k� ÿ J02�k�� � 1

3k4
��2ÿ k2�E�k� ÿ 2�1ÿ k2�K�k��
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J40�k� � 1

15k4
��8k4 ÿ 3k2 ÿ 2�E�k� ÿ �4k4 ÿ 2k2 ÿ 2�K�k��

J22�k� � J02�k� ÿ J40�k� � 1

15k4
��k4 ÿ k2 � 1�E�k� ÿ �k4 ÿ 3k2 � 2�K�k��

References

Barnett, D.M., Lothe, J., 1973. Synthesis of the sextic and the integral formalism for dislocations, Green's function and surface

waves in anisotropic elastic solids. Phys. Norv. 7, 13±19.

Deans, S.R., 1993. The Radon Transform and Some of Its Applications. Krieger, Malabar, FL.

Dongye, C., Ting, T.C.T., 1989. Explicit expressions of Barnett±Lothe tensors and their associated tensors for orthotropic

materials. Q. Appl. Math. 47, 723±734.

Gradshteyn, I.S., Ryzhik, I.M., 1980. Table of Integrals, Series and Products. Academic Press, New York.

Green, A.E., Sneddon, I.N., 1950. The distribution of stress in the neighborhood of a ¯at elliptic crack in an elastic solid. Proc.

Cambridge Phil. Soc. 46, 159±164.

Irwin, G.R., 1957. Analysis of stresses and strains near the end of a crack transversing a plate. J. Appl. Mech. 24, 36±6364.

Kassir, M.K., Sih, G.C., 1966. Three-dimensional stress distribution around an elliptical crack under arbitrary loadings. J. Appl.

Mech. 33, 601±611.

Kassir, M.K., Sih, G.C., 1967. Geometric discontinuities in elastostatics. J. Math. Mech. 16, 927±948.

Kassir, M.K., Sih, G.C., 1968. Three-dimensional stress distribution around elliptical cracks in transversely isotropic solid. Engng

Fracture Mech. 1, 327±345.

Kassir, M.K., Sih, G.C., 1975. Sih, G.C. (Ed.), Mechanics of Fracture, II. Noordho�, Leyden.

Sih, G.C., Liebowitz, H., 1968. Liebowitz, H. (Ed.), Fracture, II. Academic Press, New York.

Sekine, H., Mura, T., 1979. The elastic ®eld around an elliptical crack in an anisotropic medium under an applied stress of

polynomial forms. Int. J. Engng Sci. 17, 641±649.

Smith, F.W., Kobayashi, A.S., Emery, A.F., 1967. Stress intensity factors for penny-shaped cracks, Part I Ð in®nite solid. J. Appl.

Mech. 34, 947±952.

Sneddon, I.N., 1946. The distribution of stress in the neighborhood of a crack in an elastic solid. Proc. Roy. Soc. A187, 229±260.

Sneddon, I.N., Lowengrub, M., 1969. Crack Problems in Classical Theory of Elasticity. Wiley, New York.

Stroh, A.N., 1958. Dislocations and cracks in anisotropic elasticity. Phil. Mag. 3, 625±646.

Ting, T.C.T., 1996. Anisotropic Elasticity Ð Theory and Application. Oxford University Press, New York.

Willis, J.R., 1968. The stress ®eld around an elliptic crack in an anisotropic medium. Int. J. Engng Sci. 6, 253±263.

Wu, K-C., 1989. On the crack-tip ®elds of a dynamically propagating crack in an anisotropic elastic solid. Int. J. Fract. 41, 253±

266.

Wu, K-C., 1998. Generalization of the Stroh formalism to three-dimensional anisotropic elasticity. J. Elasticity 51, 213±225.

K. Wu / International Journal of Solids and Structures 37 (2000) 4841±4857 4857


